主要功能
單獨(dú)或同步測(cè)量葉綠素?zé)晒夂?P700
兩個(gè)光系統(tǒng)的誘導(dǎo)動(dòng)力學(xué)曲線(包括快相和慢相)
兩個(gè)光系統(tǒng)的快速光曲線和光響應(yīng)曲線
淬滅分析、暗馳豫分析
典型的 P700 曲線測(cè)量
通過葉綠素?zé)晒夂?nbsp; P700 的同步測(cè)量獲知兩個(gè)光系統(tǒng)的電子傳遞動(dòng)力學(xué)、電子載體庫的大小、圍繞 PSI 的環(huán)式電子傳遞動(dòng)力學(xué)等
通過測(cè)量 P515/535 信號(hào)變化測(cè)量跨膜質(zhì)子動(dòng)力勢(shì) pmf 及其組分跨膜質(zhì)子梯度 ΔpH 和跨膜電位 Δψ
“P515 Flux”信號(hào)能原位反映活體樣品處于穩(wěn)態(tài)的偶聯(lián)電子和質(zhì)子的流動(dòng)速率
通過測(cè)量 NADPH 熒光估算 NADP 的還原程度
通過測(cè)量 9-AA 熒光來估算跨膜質(zhì)子梯度 ΔpH
測(cè)量參數(shù)
PS II參數(shù): Fo, Fm, F, Fm’, Fv/Fm, Y(II) 即 △F/Fm’, Fo’, qP, qL, qN, NPQ, Y(NPQ), Y(NO) 和 ETR(II) 等
PS I參數(shù): P700, Pm, Pm’, P700ox, Y(I), Y(ND), Y(NA) 和 ETR(I) 等
P515/535參數(shù):質(zhì)子動(dòng)力勢(shì)pmf,跨膜質(zhì)子梯度 ΔpH,跨膜電位 Δψ 等
NADPH/9-AA參數(shù):NADP 的還原程度,ΔpH 等
其他測(cè)量參數(shù):Post-Illumination(鼓包),PQ-Pool(PQ庫)等
應(yīng)用領(lǐng)域
相當(dāng)于兩臺(tái) PAM-101/ 102/ 103 的功能,可同時(shí)測(cè)量光系統(tǒng)II活性(調(diào)制葉綠素?zé)晒猓┖凸庀到y(tǒng)I活性(P700 吸收變化),可用于、植物生理學(xué)、農(nóng)學(xué)、林學(xué)、園藝學(xué)等領(lǐng)域光合作用機(jī)理研究。
擴(kuò)展模塊 P515/535 可測(cè)量跨膜質(zhì)子動(dòng)力勢(shì) pmf 及其組分跨膜質(zhì)子梯度 ΔpH 和跨膜電位 Δψ 等,是葉綠素循環(huán)和光保護(hù)研究的強(qiáng)大工具。
擴(kuò)展模塊NADPH/9-AA,可測(cè)量 NADPH 熒光和 9-AA 熒光,估算 NADP 的還原程度和跨膜質(zhì)子梯度 ΔpH。
主要技術(shù)參數(shù)
主機(jī):通用型(DUAL-C),可接標(biāo)準(zhǔn)檢測(cè)器,可擴(kuò)展 P515/535,NADPH/9AA 等多種模塊。
P700 雙波長測(cè)量光:LED,830 nm 和 875 nm
PSII 熒光測(cè)量光:LED,460 nm(DUAL-DB)或 620 nm(DUAL-DR)
紅色光化光:LED 陣列,635 nm;最大連續(xù)光強(qiáng) 3000 μmol m-2 s-1
藍(lán)色光化光:LED,460 nm;最大連續(xù)光強(qiáng) 1100 μmol m-2 s-1
單周轉(zhuǎn)飽和閃光(ST):200000 μmol m-2 s-1,5~50 μs 可調(diào)
多周轉(zhuǎn)飽和閃光(MT):20000 μmol m-2 s-1,1~1000 ms 可調(diào)
遠(yuǎn)紅光:720nm
選購指南
一、高等植物葉片測(cè)量基本款
系統(tǒng)組成:通用型主機(jī),標(biāo)準(zhǔn)版檢測(cè)單元,數(shù)據(jù)線,工作臺(tái),軟件等
注意:高等植物葉片測(cè)量紅光檢測(cè)器(Dual-DR)和藍(lán)光檢測(cè)器(Dual-DB)可任選其一
高等植物葉片測(cè)量基本款 |
二、懸浮樣品測(cè)量基本款
系統(tǒng)組成:通用型主機(jī),標(biāo)準(zhǔn)版檢測(cè)單元,懸浮液的光學(xué)單元,數(shù)據(jù)線,工作臺(tái),軟件等
注意:藻類測(cè)量時(shí),藍(lán)藻請(qǐng)選擇紅光檢測(cè)器(Dual-DR),其他藻類可選藍(lán)光檢測(cè)器(Dual-DB)
懸浮樣品測(cè)量基本款 |
同步測(cè)量 PSII(紅色)和 PSI(藍(lán)色)的誘導(dǎo)曲線 | 同步測(cè)量 PSII(紅色)和 PSI(藍(lán)色)的光響應(yīng)曲線 | 典型的 P700 測(cè)量曲線 |
| | |
打開飽和脈沖時(shí)葉綠素?zé)晒庑盘?hào)(紅色)和 P700(藍(lán)色)信號(hào)變化 | 以線性時(shí)間測(cè)量的熒光快速動(dòng)力學(xué)曲線 | 以對(duì)數(shù)時(shí)間測(cè)量的熒光快速動(dòng)力學(xué)曲線 |
三、其他擴(kuò)展模塊
擴(kuò)展測(cè)量一:P515/535模塊
P515/535 模塊是 WALZ 公司為 DUAL-PAM-100 設(shè)計(jì)的測(cè)量模塊,可以直接連接 DUAL-PAM-100 的主機(jī),測(cè)量 550-510 nm 的差式吸收以及 535 nm 波長的信號(hào)變化。P515/535 模塊可以測(cè)量光合器官的跨膜質(zhì)子動(dòng)力勢(shì)(pmf)、跨膜電位(Δψ)、跨膜質(zhì)子梯度(ΔpH)和玉米黃素(Zea)變化等內(nèi)容。此外,該模塊還提供一種特殊的 “P515 Flux” 操作模式,可讓光化光以光-暗脈沖形式打開-關(guān)閉(1/1調(diào)制光/暗),原位測(cè)量活體樣品處于穩(wěn)態(tài)的偶聯(lián)電子和質(zhì)子的流動(dòng)速率。 | |||
通過測(cè)量 P515 變化得出質(zhì)子動(dòng)力勢(shì)(pmf)兩個(gè)組分 Δψ 和 ΔpH | 通過測(cè)量535 nm變化得出質(zhì)子動(dòng)力勢(shì)(pmf)及其組分ΔpH | 同步測(cè)量P515和535 nm信號(hào)的光響應(yīng)曲線 |
擴(kuò)展測(cè)量二:NADPH/9-AA 模塊
NADPH/9-AA 模塊是 WALZ 公司為 DUAL-PAM-100 設(shè)計(jì)的測(cè)量模塊,可以直接連接 DUAL-PAM-100 的主機(jī),測(cè)量 NADPH 熒光和 9-AA 熒光。NADPH 熒光可用于估算 NADP 的還原程度,9-AA 熒光用于估算跨膜質(zhì)子梯度 ΔpH。該模塊的一個(gè)很大特色是與標(biāo)準(zhǔn)探頭聯(lián)用,在國際上第一次做到了同步測(cè)量葉綠素?zé)晒馀c NADPH 熒光。
NADPH 探頭圖示 | 同步測(cè)量 NADPH 熒光(藍(lán)色)與葉綠素?zé)晒猓?span style="color: rgb(255, 0, 0);">紅色) |
擴(kuò)展測(cè)量三:與光合儀 GFS-3000 聯(lián)用
|
專為 DUAL-PAM-100 與 GFS-3000 的同步測(cè)量設(shè)計(jì),由特制葉室(帶溫度和PAR傳感器)、風(fēng)扇、導(dǎo)光桿、電子盒與支架構(gòu)成。同步測(cè)量時(shí),光源完全由 DUAL-PAM-100 的測(cè)量頭提供,氣體交換由 GFS-3000 的紅外分析器檢測(cè),P700 和葉綠素?zé)晒庥?DUAL-PAM-100 的檢測(cè)器測(cè)量。 |
四、其他可選附件
1,Dual-DPD:?jiǎn)为?dú)的光電二極管檢測(cè)器單元,通過導(dǎo)光桿連接到 ED?101US/MD 上,配置 NADPH 模塊時(shí)推薦選配。
2,Dual-DPM:?jiǎn)为?dú)的光電倍增管檢測(cè)器單元,用于較稀的懸浮液熒光測(cè)量,需要裝配到 ED-101US/MD 上使用。必須要同時(shí)配置測(cè)量頭 DUAL-DB 或 DUAL-DR 來激發(fā)調(diào)制熒光。
3,ED-101US/T: 控溫裝置,安裝在 ED-101US/MD 上,為懸浮液控溫;可外接循環(huán)水浴來控溫,
4,US-SQS/WB: 球狀微型光量子探頭,可插入樣品杯中測(cè)量 PAR;由主機(jī) DUAL-C 控制。
5,PHYTO-MS:磁力攪拌器,連接到光學(xué)單元 ED-101US/MD 的底部對(duì)懸浮液進(jìn)行攪拌。
6,DUAL-OP:擬南芥等小葉片測(cè)量用適配器,特制透光小孔適配器套裝,直徑 7 mm、5 mm 和 3 mm,對(duì)于擬南芥等小葉片的 P700 測(cè)量非常重要!
產(chǎn)地:德國 WALZ
參考文獻(xiàn)
數(shù)據(jù)來源:光合作用文獻(xiàn) Endnote 數(shù)據(jù)庫,更新至 2021 年 1月,文獻(xiàn)數(shù)量超過 10000 篇
原始數(shù)據(jù)來源:Google Scholar
1. Burlacot, A., et al. (2022). "Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism." Nature.
2. Forner, J., et al. (2022). "Targeted introduction of heritable point mutations into the plant mitochondrial genome." Nature Plants.
3. Capó-Bau?à, S., et al. (2022). "Correlative adaptation between Rubisco and CO2-concentrating mechanisms in seagrasses." Nature Plants 8(6): 706-716.
4. Kusama, S., et al. (2022). "Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation." Nature communications 13(1): 3067.
5. Mallén-Ponce, M. J., et al. (2022). "Photosynthetic assimilation of CO2 regulates TOR activity." PNAS 119(2): e2115261119.
6. Basso, L., et al. (2022). "Flavodiiron proteins enhance the rate of CO2 assimilation in Arabidopsis under fluctuating light intensity." Plant Physiology.
7. Baudry, K., et al. (2022). "Adenylates regulate Arabidopsis plastidial thioredoxin activities through the binding of a CBS domain protein." Plant Physiology.
8. Torrado, A., et al. (2022). "Directing cyanobacterial photosynthesis in a cytochrome c oxidase mutant using a heterologous electron sink." Plant Physiology.
9. Penzler, J.-F., et al. (2022). "Commonalities and specialties in photosynthetic functions of PROTON GRADIENT REGULATION5 variants in Arabidopsis." Plant Physiology.
10. Ho, T. T. H., et al. (2022). "Photosystem I light-harvesting proteins regulate photosynthetic electron transfer and hydrogen production." Plant Physiology 189(1): 329-343.
11. Ji, D., et al. (2022). "NADP+ Supply Adjusts the Synthesis of Photosystem I in Arabidopsis Chloroplasts." Plant Physiology.
12. Fitzpatrick, D., et al. (2022). "True oxygen reduction capacity during photosynthetic electron transfer in thylakoids and intact leaves." Plant Physiology.
13. Seydoux, C., et al. (2022). "Impaired photoprotection in Phaeodactylum tricornutum KEA3 mutants reveals the proton regulatory circuit of diatoms light acclimation." New Phytologist n/a(n/a).
14. Bethmann, S. T. (2022). "Light Regulation of Zeaxanthin Epoxidase in Plants."
15. Cecchin, M., et al. (2022). "Astaxanthin and eicosapentaenoic acid production by S4, a new mutant strain of Nannochloropsis gaditana." Microbial Cell Factories 21(1): 117.
16. Chen, Q., et al. (2022). "Arginine Increases Tolerance to Nitrogen Deficiency in Malus hupehensis via Alterations in Photosynthetic Capacity and Amino Acids Metabolism." Frontiers in Plant Science 12.
17. Chen, X., et al. (2022). "Effects of Cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis." Scientia Horticulturae 305: 111371.
18. Choi, J., et al. (2022). "Effect of far-red and UV-B light on the growth and ginsenoside content of ginseng (Panax ginseng C. A. Meyer) sprouts aeroponically grown in plant factories." Horticulture, Environment, and Biotechnology 63(1): 77-87.
19. Dhokne, K., et al. (2022). "Change in the photochemical and structural organization of thylakoids from pea (Pisum sativum) under salt stress." Plant Physiology and Biochemistry.
20. Ermakova, M., et al. (2022). "Enhanced abundance and activity of the chloroplast ATP synthase in rice through the overexpression of the AtpD subunit." Journal of Experimental Botany.
21. Espinoza-Corral, R. and P. K. Lundquist (2022). "The plastoglobule-localized protein AtABC1K6 is a Mn<sup>2+</sup>-dependent kinase necessary for timely transition to reproductive growth." Journal of Biological Chemistry.
22. Fang, Y., et al. (2022). "Photoprotective energy quenching in the red alga Porphyridium purpureum occurs at the core antenna of the photosystem II but not at its reaction center." Journal of Biological Chemistry: 101783.
23. Fattore, N., et al. (2022). "An increase in the membrane lipids recycling by PDAT overexpression stimulates the accumulation of triacylglycerol in Nannochloropsis gaditana." Journal of Biotechnology.
24. Fila?ek, A., et al. (2022). "Pre-Acclimation to Elevated Temperature Stabilizes the Activity of Photosystem I in Wheat Plants Exposed to an Episode of Severe Heat Stress." Plants 11(5): 616.
25. Gao, P., et al. (2022). "PALE‐GREEN LEAF 1, a rice cpSRP54 protein, is essential for the assembly of the PSI‐LHCI supercomplex." Plant Direct 6(8): e436.
26. Goto, M., et al. (2022). "Metabolic changes contributing to large biomass production in the Arabidopsis ppGpp-accumulating mutant under nitrogen deficiency." Planta 255(2): 48.
27. Guan, C., et al. (2022). "Physiological functional traits explain morphological variation of Ulva prolifera during the drifting of green tides." Ecology and evolution 12(1): e8504.
28. Hatano, J., et al. (2022). "NADPH production in dark stages is critical for cyanobacterial photocurrent generation: a study using mutants deficient in oxidative pentose phosphate pathway." Photosynthesis Research.
29. Hu, L.-y., et al. (2022). "Overexpression of MdMIPS1 enhances drought tolerance and water-use efficiency in apple." Journal of Integrative Agriculture 21(7): 1968-1981.
30. HU, W., et al. (2022). "24-epibrassinolide improved chilled tomato photosynthetic performance by stabilizing electron transport chain and function of photosystem II." Biologia Plantarum 66: 178-187.
31. Hui, L., et al. (2022). "Overexpression of Rice Monogalactosyldiacylglycerol Synthase OsMGD Leads to Enhanced Salt Tolerance in Rice." Agronomy 12(3): 568.
32. Iqbal, N., et al. (2022). "Fumonisin B1-Induced Oxidative Burst Perturbed Photosynthetic Activity and Affected Antioxidant Enzymatic Response in Tomato Plants in Ethylene-Dependent Manner." Journal of Plant Growth Regulation.
33. Jiao, X., et al. (2022). "Effects of rising VPD on the nutrient uptake, water status and photosynthetic system of tomato plants at different nitrogen applications under low temperature." Scientia Horticulturae 304: 111335.
34. Jin, Y., et al. (2022). "Induction of polyploid Malus prunifolia and analysis of its salt tolerance." Tree physiology.
35. Kusama, S., et al. (2022). "Dissection of respiratory and cyclic electron transport in Synechocystis sp. PCC 6803." Journal of Plant Research.
36. Lazar, D., et al. (2022). "Light quality, oxygenic photosynthesis and more." Photosynthetica.
37. Li, C., et al. (2022). "Chloroplast Thylakoidal Ascorbate Peroxidase, PtotAPX, Has Enhanced Resistance to Oxidative Stress in Populus tomentosa." International journal of molecular sciences 23(6): 3340.
38. Li, H.-G., et al. (2022). "The in vivo performance of a heat shock transcription factor from Populus euphratica, PeHSFA2, promises a prospective strategy to alleviate heat stress damage in poplar." Environmental and Experimental Botany: 104940.
39. Li, M., et al. (2022). "Running title: ABA pathway meets CBF pathway at CmADC." Horticulture research.
40. Li, M., et al. (2022). "Short-term suboptimal low temperature has short- and long-term effects on melon seedlings." Scientia Horticulturae 297: 110967.
41. Li, W.-t., et al. (2022). "Extension of the EICA hypothesis for invasive Chromolaena odorata." Acta Oecologica 114: 103803.
42. Li, X., et al. (2022). "Attachment of Ferredoxin: NADP+ Oxidoreductase to Phycobilisomes Is Required for Photoheterotrophic Growth of the Cyanobacterium Synechococcus sp. PCC 7002." 10(7): 1313.
43. Liebsch, D., et al. (2022). "Metabolic control of arginine and ornithine levels paces the progression of leaf senescence." Plant Physiol.
44. Lin, S., et al. (2022). "Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress." Frontiers in Plant Science 13.
45. Liu, X., et al. (2022). "Formation of resting cells is accompanied with enrichment of ferritin in marine diatom Phaeodactylum tricornutum." Algal Research 61: 102567.
46. Liu, Z., et al. (2022). "Direct estimation of photosynthetic CO2 assimilation from solar-induced chlorophyll fluorescence (SIF)." Remote Sensing of Environment 271: 112893.
47. Lyu, H. and D. Lazár (2022). "Analyzing the effect of ion binding to the membrane-surface on regulating the light-induced transthylakoid electric potential (ΔΨm)." 13.
48. Manjre, S., et al. (2022). "Evaluating the effect of seasonal conditions on metabolism and photosynthetic performance of Picochlorum sp. and its influence on biomass productivity." Bioresource Technology Reports: 101029.
49. Manoyan, J., et al. (2022). "Growth characteristics, biohydrogen production and photochemical activity of photosystems in green microalgae Parachlorella kessleri exposed to nitrogen deprivation." International Journal of Hydrogen Energy.
50. Manzoor, H., et al. (2022). "Methyl Jasmonate Alleviated the Adverse Effects of Cadmium Stress in Pea (Pisum sativum L.): A Nexus of Photosystem II Activity and Dynamics of Redox Balance." Frontiers in Plant Science 13.
51. Mao, H.-T., et al. (2022). "Temporal and spatial biomonitoring of atmospheric heavy metal pollution using moss bags in Xichang." Ecotoxicology and Environmental Safety 239: 113688.
52. Mehta, P., et al. (2022). "Synergistic integration of wastewaters from second generation ethanol plant for algal biofuel production: an industrially relevant option." 3 Biotech 12(1): 34.
53. Miller, N. T., et al. (2022). "Cyclic Electron Flow-Coupled Proton Pumping in Synechocystis sp. PCC6803 Is Dependent upon NADPH Oxidation by the Soluble Isoform of Ferredoxin:NADP-Oxidoreductase." Microorganisms 10(5): 855.
54. Mohammad Aslam, S., et al. (2022). "Heat-Induced Photosynthetic Responses of Symbiodiniaceae Revealed by Flash-Induced Fluorescence Relaxation Kinetics." 9.
55. Noguera, M. M., et al. (2022). "Involvement of glutamine synthetase 2 (GS2) amplification and overexpression in Amaranthus palmeri resistance to glufosinate." Planta 256(3): 57.
56. Qin, L., et al. (2022). "Physiological, Metabolic and Transcriptional Responses of Basil (Ocimum basilicum Linn. var. pilosum (Willd.) Benth.) to Heat Stress." Agronomy 12(6): 1434.
57. Rath, J. R., et al. (2022). "Temperature-induced reversible changes in photosynthesis efficiency and organization of thylakoid membranes from pea (Pisum sativum)." Plant Physiology and Biochemistry 185: 144-154.
58. Ravi Kiran, B. and S. Venkata Mohan (2022). "Phycoremediation potential ofTetradesmus sp.SVMIICT4in treating dairy wastewaterusingFlat-Panel photobioreactor." Bioresource Technology 345: 126446.
59. Samanta, L., et al. (2022). "Differential catalase activity and tolerance to hydrogen peroxide in the filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120." Archives of Microbiology 204(2): 121.
60. Schansker, G., et al. (2022). "Identification of Twelve Different Mineral Deficiencies in Hydroponically Grown Sunflower Plants on the Basis of Short Measurements of the Fluorescence and P700 Oxidation/Reduction Kinetics." Frontiers in Plant Science | 13.
61. Sharma, Y., et al. (2022). "Lead accumulation, translocation, distribution and photosynthetic toxicity in Cyamopsis tetragonoloba." Soil and Sediment Contamination: An International Journal: 1-18.
62. Sheikhalipour, M., et al. (2022). "Melatonin and TiO2 NPs Application-Induced Changes in Growth, Photosynthesis, Antioxidant Enzymes Activities and Secondary Metabolites in Stevia (Stevia rebaudiana Bertoni) Under Drought Stress Conditions." Journal of Plant Growth Regulation.
63. Sheikhalipour, M., et al. (2022). "Exogenous melatonin increases salt tolerance in bitter melon by regulating ionic balance, antioxidant system and secondary metabolism-related genes." BMC Plant Biology 22(1): 380.
64. Shi, Q., et al. (2022). "Photorespiration Alleviates Photoinhibition of Photosystem I under Fluctuating Light in Tomato." Plants 11(2): 195.
65. Solymosi, D., et al. (2022). "Nitric oxide represses photosystem II and NDH-1 in the cyanobacterium Synechocystis sp. PCC 6803." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1863(1): 148507.
66. Soni, S. K., et al. (2022). "Papaya Leaf Curl Virus (PaLCuV) Infection on Papaya (Carica papaya L.) Plants Alters Anatomical and Physiological Properties and Reduces Bioactive Components." Plants 11(5): 579.
67. Steen, C. J., et al. (2022). "Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations." Plant, Cell
68. Environment Progress & Sustainable Energy.
69. Suganami, M., et al. (2022). "Expression of flavodiiron protein rescues defects in electron transport around PSI resulting from overproduction of Rubisco activase in rice." Journal of Experimental Botany.
70. Sun, H., et al. (2022). "The response of photosystem I to fluctuating light is influenced by leaf nitrogen content in tomato." Environmental and Experimental Botany 193: 104665.
71. Suslichenko, I. S., et al. (2022). "The noninvasive monitoring of the redox status of photosynthetic electron transport chains in Hibiscus rosa-sinensis and Tradescantia leaves." Plant Physiology and Biochemistry.
72. Takeuchi, K., et al. (2022). "The ability of P700 oxidation in photosystem I reflects chilling stress tolerance in cucumber." Journal of Plant Research.
73. Vannoni, M., et al. (2022). "Resilience of a microphytobenthos community from the Severn Estuary, UK, to chlorination: A mesocosm approach." Marine pollution bulletin 176: 113443.
74. Wan, X., et al. (2022). "Synergistic toxicity to the toxigenic Microcystis and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures." Toxicon 210: 49-57.
75. Wang, H., et al. (2022). "Photosynthesis under fluctuating light in the CAM plant Vanilla planifolia." Plant Science 317: 111207.
76. Wu, F., et al. (2022). "Assembly of LHCA5 into PSI blue shifts the far-red fluorescence emission in higher plants." Biochemical and biophysical research communications 612: 77-83.
77. Xia, H., et al. (2022). "Sex-Specific Physiological Responses of Populus cathayana to Uranium Stress." Forests 13(7): 1123.
78. Yang, J., et al. (2022). "The ABA receptor gene MdPYL9 confers tolerance to drought stress in transgenic apple (Malus domestica)." Environmental and Experimental Botany 194: 104695.
79. Yanykin, D. V., et al. (2022). "Effect of Up-Converting Luminescent Nanoparticles with Increased Quantum Yield Incorporated into the Fluoropolymer Matrix on Solanum lycopersicum Growth." Agronomy 12(1): 108.
80. Yudina, L., et al. (2022). "Influence of Burning-Induced Electrical Signals on Photosynthesis in Pea Can Be Modified by Soil Water Shortage." Plants 11(4): 534.
81. Yudina, L., et al. (2022). "Ratio of Intensities of Blue and Red Light at Cultivation Influences Photosynthetic Light Reactions, Respiration, Growth, and Reflectance Indices in Lettuce." Biology 11(1): 60.
82. Zeng, Z.-L., et al. (2022). "Regulation of Leaf Angle Protects Photosystem I under Fluctuating Light in Tobacco Young Leaves." Cells 11(2): 252.
83. Zhang, X., et al. (2022). "Biphasic effects of typical chlorinated organophosphorus flame retardants on Microcystis aeruginosa." Ecotoxicology and Environmental Safety 241: 113813.
84. Zhang, Y., et al. (2022). "Analysis of Lhcb gene family in rapeseed (Brassica napus L.) identifies a novel member “BnLhcb3.4” modulating cold tolerance." Environmental and Experimental Botany: 104848.
85. Zhang, Y., et al. (2022). "CfAPX, a cytosolic ascorbate peroxidase gene from Cryptomeria fortunei, confers tolerance to abiotic stress in transgenic Arabidopsis." Plant Physiology and Biochemistry.
86. Zhang, Z., et al. (2022). "Exogenous trehalose differently improves photosynthetic carbon assimilation capacities in maize and wheat under heat stress." Journal of Plant Interactions 17(1): 361-370.
87. Zheng, B., et al. (2022). "Regulative effect of imazethapyr on Arabidopsis thaliana growth and rhizosphere microbial community through multiple generations of culture." Plant and Soil.
88. Zhong, Y., et al. (2022). "Balancing Damage via Non-Photochemical Quenching, Phenolic Compounds and Photorespiration in Ulva prolifera Induced by Low-Dose and Short-Term UV-B Radiation." International journal of molecular sciences 23(5): 2693.
89. Zhu, Q., et al. (2022). "Effects of mutations of D1-R323, D1-N322, D1-D319, D1-H304 on the functioning of photosystem II in Thermosynechococcus vulcanus." Photosynthesis Research.